non-abelian, soluble, monomial
Aliases: C32⋊Q16, C2.5S3≀C2, (C3×C6).5D4, C32⋊2Q8.C2, C32⋊2C8.2C2, C3⋊Dic3.3C22, SmallGroup(144,119)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C32⋊Q16 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2Q8 — C32⋊Q16 |
C32 — C3×C6 — C3⋊Dic3 — C32⋊Q16 |
Generators and relations for C32⋊Q16
G = < a,b,c,d | a3=b3=c8=1, d2=c4, ab=ba, cac-1=dad-1=b, cbc-1=a-1, dbd-1=a, dcd-1=c-1 >
Character table of C32⋊Q16
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 4 | 4 | 12 | 12 | 18 | 4 | 4 | 18 | 18 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ7 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ8 | 4 | 4 | -2 | 1 | 0 | 2 | 0 | -2 | 1 | 0 | 0 | -1 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ9 | 4 | 4 | -2 | 1 | 0 | -2 | 0 | -2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ10 | 4 | 4 | 1 | -2 | 2 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ11 | 4 | 4 | 1 | -2 | -2 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ12 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | -√3 | 0 | 0 | √3 | symplectic faithful, Schur index 2 |
ρ13 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | √3 | 0 | 0 | -√3 | symplectic faithful, Schur index 2 |
ρ14 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | √3 | -√3 | 0 | symplectic faithful, Schur index 2 |
ρ15 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | -√3 | √3 | 0 | symplectic faithful, Schur index 2 |
(2 47 32)(4 26 41)(6 43 28)(8 30 45)(9 19 35)(11 37 21)(13 23 39)(15 33 17)
(1 46 31)(3 25 48)(5 42 27)(7 29 44)(10 36 20)(12 22 38)(14 40 24)(16 18 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 28 16 32)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)
G:=sub<Sym(48)| (2,47,32)(4,26,41)(6,43,28)(8,30,45)(9,19,35)(11,37,21)(13,23,39)(15,33,17), (1,46,31)(3,25,48)(5,42,27)(7,29,44)(10,36,20)(12,22,38)(14,40,24)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)>;
G:=Group( (2,47,32)(4,26,41)(6,43,28)(8,30,45)(9,19,35)(11,37,21)(13,23,39)(15,33,17), (1,46,31)(3,25,48)(5,42,27)(7,29,44)(10,36,20)(12,22,38)(14,40,24)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41) );
G=PermutationGroup([[(2,47,32),(4,26,41),(6,43,28),(8,30,45),(9,19,35),(11,37,21),(13,23,39),(15,33,17)], [(1,46,31),(3,25,48),(5,42,27),(7,29,44),(10,36,20),(12,22,38),(14,40,24),(16,18,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,28,16,32),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41)]])
C32⋊Q16 is a maximal subgroup of
C32⋊D8⋊5C2 C32⋊Q16⋊C2 C3⋊S3⋊Q16 C62.13D4 C62.15D4 C33⋊Q16 C33⋊3Q16
C32⋊Q16 is a maximal quotient of C62.4D4 C62.7D4 He3⋊Q16 C33⋊Q16 C33⋊3Q16
Matrix representation of C32⋊Q16 ►in GL4(𝔽73) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 |
0 | 1 | 0 | 0 |
72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 14 | 68 |
0 | 0 | 54 | 59 |
7 | 14 | 0 | 0 |
59 | 66 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,72],[0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,1],[0,0,7,59,0,0,14,66,14,54,0,0,68,59,0,0],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0] >;
C32⋊Q16 in GAP, Magma, Sage, TeX
C_3^2\rtimes Q_{16}
% in TeX
G:=Group("C3^2:Q16");
// GroupNames label
G:=SmallGroup(144,119);
// by ID
G=gap.SmallGroup(144,119);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,48,73,55,218,116,50,964,730,256,299,881]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=d*a*d^-1=b,c*b*c^-1=a^-1,d*b*d^-1=a,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊Q16 in TeX
Character table of C32⋊Q16 in TeX