Copied to
clipboard

G = C32⋊Q16order 144 = 24·32

The semidirect product of C32 and Q16 acting via Q16/C2=D4

non-abelian, soluble, monomial

Aliases: C32⋊Q16, C2.5S3≀C2, (C3×C6).5D4, C322Q8.C2, C322C8.2C2, C3⋊Dic3.3C22, SmallGroup(144,119)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C32⋊Q16
C1C32C3×C6C3⋊Dic3C322Q8 — C32⋊Q16
C32C3×C6C3⋊Dic3 — C32⋊Q16
C1C2

Generators and relations for C32⋊Q16
 G = < a,b,c,d | a3=b3=c8=1, d2=c4, ab=ba, cac-1=dad-1=b, cbc-1=a-1, dbd-1=a, dcd-1=c-1 >

2C3
2C3
6C4
6C4
9C4
2C6
2C6
9C8
9Q8
9Q8
2Dic3
2Dic3
6Dic3
6Dic3
6C12
6C12
9Q16
6Dic6
6Dic6
2C3×Dic3
2C3×Dic3

Character table of C32⋊Q16

 class 123A3B4A4B4C6A6B8A8B12A12B12C12D
 size 114412121844181812121212
ρ1111111111111111    trivial
ρ211111-1111-1-1-111-1    linear of order 2
ρ31111-11111-1-11-1-11    linear of order 2
ρ41111-1-111111-1-1-1-1    linear of order 2
ρ5222200-222000000    orthogonal lifted from D4
ρ62-222000-2-2-220000    symplectic lifted from Q16, Schur index 2
ρ72-222000-2-22-20000    symplectic lifted from Q16, Schur index 2
ρ844-21020-2100-100-1    orthogonal lifted from S3≀C2
ρ944-210-20-21001001    orthogonal lifted from S3≀C2
ρ10441-22001-2000-1-10    orthogonal lifted from S3≀C2
ρ11441-2-2001-2000110    orthogonal lifted from S3≀C2
ρ124-4-210002-100-3003    symplectic faithful, Schur index 2
ρ134-4-210002-100300-3    symplectic faithful, Schur index 2
ρ144-41-2000-120003-30    symplectic faithful, Schur index 2
ρ154-41-2000-12000-330    symplectic faithful, Schur index 2

Smallest permutation representation of C32⋊Q16
On 48 points
Generators in S48
(2 47 32)(4 26 41)(6 43 28)(8 30 45)(9 19 35)(11 37 21)(13 23 39)(15 33 17)
(1 46 31)(3 25 48)(5 42 27)(7 29 44)(10 36 20)(12 22 38)(14 40 24)(16 18 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 28 16 32)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)

G:=sub<Sym(48)| (2,47,32)(4,26,41)(6,43,28)(8,30,45)(9,19,35)(11,37,21)(13,23,39)(15,33,17), (1,46,31)(3,25,48)(5,42,27)(7,29,44)(10,36,20)(12,22,38)(14,40,24)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)>;

G:=Group( (2,47,32)(4,26,41)(6,43,28)(8,30,45)(9,19,35)(11,37,21)(13,23,39)(15,33,17), (1,46,31)(3,25,48)(5,42,27)(7,29,44)(10,36,20)(12,22,38)(14,40,24)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41) );

G=PermutationGroup([[(2,47,32),(4,26,41),(6,43,28),(8,30,45),(9,19,35),(11,37,21),(13,23,39),(15,33,17)], [(1,46,31),(3,25,48),(5,42,27),(7,29,44),(10,36,20),(12,22,38),(14,40,24),(16,18,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,28,16,32),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41)]])

C32⋊Q16 is a maximal subgroup of   C32⋊D85C2  C32⋊Q16⋊C2  C3⋊S3⋊Q16  C62.13D4  C62.15D4  C33⋊Q16  C333Q16
C32⋊Q16 is a maximal quotient of   C62.4D4  C62.7D4  He3⋊Q16  C33⋊Q16  C333Q16

Matrix representation of C32⋊Q16 in GL4(𝔽73) generated by

1000
0100
0001
007272
,
0100
727200
0010
0001
,
001468
005459
71400
596600
,
0010
0001
72000
07200
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,72],[0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,1],[0,0,7,59,0,0,14,66,14,54,0,0,68,59,0,0],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0] >;

C32⋊Q16 in GAP, Magma, Sage, TeX

C_3^2\rtimes Q_{16}
% in TeX

G:=Group("C3^2:Q16");
// GroupNames label

G:=SmallGroup(144,119);
// by ID

G=gap.SmallGroup(144,119);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,48,73,55,218,116,50,964,730,256,299,881]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=d*a*d^-1=b,c*b*c^-1=a^-1,d*b*d^-1=a,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Q16 in TeX
Character table of C32⋊Q16 in TeX

׿
×
𝔽